Extensions 1→N→G→Q→1 with N=C12⋊S3 and Q=C22

Direct product G=N×Q with N=C12⋊S3 and Q=C22
dρLabelID
C22×C12⋊S3144C2^2xC12:S3288,1005

Semidirect products G=N:Q with N=C12⋊S3 and Q=C22
extensionφ:Q→Out NdρLabelID
C12⋊S31C22 = S3×D24φ: C22/C1C22 ⊆ Out C12⋊S3484+C12:S3:1C2^2288,441
C12⋊S32C22 = C241D6φ: C22/C1C22 ⊆ Out C12⋊S3484+C12:S3:2C2^2288,442
C12⋊S33C22 = S3×D4⋊S3φ: C22/C1C22 ⊆ Out C12⋊S3488+C12:S3:3C2^2288,572
C12⋊S34C22 = D12⋊D6φ: C22/C1C22 ⊆ Out C12⋊S3248+C12:S3:4C2^2288,574
C12⋊S35C22 = D12.7D6φ: C22/C1C22 ⊆ Out C12⋊S3488+C12:S3:5C2^2288,582
C12⋊S36C22 = D12.10D6φ: C22/C1C22 ⊆ Out C12⋊S3488+C12:S3:6C2^2288,589
C12⋊S37C22 = D8×C3⋊S3φ: C22/C1C22 ⊆ Out C12⋊S372C12:S3:7C2^2288,767
C12⋊S38C22 = C247D6φ: C22/C1C22 ⊆ Out C12⋊S372C12:S3:8C2^2288,771
C12⋊S39C22 = S32×D4φ: C22/C1C22 ⊆ Out C12⋊S3248+C12:S3:9C2^2288,958
C12⋊S310C22 = Dic612D6φ: C22/C1C22 ⊆ Out C12⋊S3248+C12:S3:10C2^2288,960
C12⋊S311C22 = D1213D6φ: C22/C1C22 ⊆ Out C12⋊S3248+C12:S3:11C2^2288,962
C12⋊S312C22 = S3×Q83S3φ: C22/C1C22 ⊆ Out C12⋊S3488+C12:S3:12C2^2288,966
C12⋊S313C22 = D1216D6φ: C22/C1C22 ⊆ Out C12⋊S3488+C12:S3:13C2^2288,968
C12⋊S314C22 = C2×C325D8φ: C22/C2C2 ⊆ Out C12⋊S3144C12:S3:14C2^2288,760
C12⋊S315C22 = C243D6φ: C22/C2C2 ⊆ Out C12⋊S372C12:S3:15C2^2288,765
C12⋊S316C22 = C2×C3⋊D24φ: C22/C2C2 ⊆ Out C12⋊S348C12:S3:16C2^2288,472
C12⋊S317C22 = D12.28D6φ: C22/C2C2 ⊆ Out C12⋊S3484C12:S3:17C2^2288,478
C12⋊S318C22 = C2×C327D8φ: C22/C2C2 ⊆ Out C12⋊S3144C12:S3:18C2^2288,788
C12⋊S319C22 = C62.131D4φ: C22/C2C2 ⊆ Out C12⋊S372C12:S3:19C2^2288,789
C12⋊S320C22 = C2×D6.6D6φ: C22/C2C2 ⊆ Out C12⋊S348C12:S3:20C2^2288,949
C12⋊S321C22 = C2×S3×D12φ: C22/C2C2 ⊆ Out C12⋊S348C12:S3:21C2^2288,951
C12⋊S322C22 = S3×C4○D12φ: C22/C2C2 ⊆ Out C12⋊S3484C12:S3:22C2^2288,953
C12⋊S323C22 = D1224D6φ: C22/C2C2 ⊆ Out C12⋊S3484C12:S3:23C2^2288,955
C12⋊S324C22 = D1227D6φ: C22/C2C2 ⊆ Out C12⋊S3244+C12:S3:24C2^2288,956
C12⋊S325C22 = C2×D4×C3⋊S3φ: C22/C2C2 ⊆ Out C12⋊S372C12:S3:25C2^2288,1007
C12⋊S326C22 = C3282+ 1+4φ: C22/C2C2 ⊆ Out C12⋊S372C12:S3:26C2^2288,1009
C12⋊S327C22 = C2×C12.26D6φ: C22/C2C2 ⊆ Out C12⋊S3144C12:S3:27C2^2288,1011
C12⋊S328C22 = C4○D4×C3⋊S3φ: C22/C2C2 ⊆ Out C12⋊S372C12:S3:28C2^2288,1013
C12⋊S329C22 = C2×C12.59D6φ: trivial image144C12:S3:29C2^2288,1006
C12⋊S330C22 = C62.154C23φ: trivial image72C12:S3:30C2^2288,1014

Non-split extensions G=N.Q with N=C12⋊S3 and Q=C22
extensionφ:Q→Out NdρLabelID
C12⋊S3.1C22 = S3×C24⋊C2φ: C22/C1C22 ⊆ Out C12⋊S3484C12:S3.1C2^2288,440
C12⋊S3.2C22 = D24⋊S3φ: C22/C1C22 ⊆ Out C12⋊S3484C12:S3.2C2^2288,443
C12⋊S3.3C22 = Dic12⋊S3φ: C22/C1C22 ⊆ Out C12⋊S3484C12:S3.3C2^2288,449
C12⋊S3.4C22 = D6.1D12φ: C22/C1C22 ⊆ Out C12⋊S3484C12:S3.4C2^2288,454
C12⋊S3.5C22 = D6.3D12φ: C22/C1C22 ⊆ Out C12⋊S3484+C12:S3.5C2^2288,456
C12⋊S3.6C22 = Dic63D6φ: C22/C1C22 ⊆ Out C12⋊S3488+C12:S3.6C2^2288,573
C12⋊S3.7C22 = Dic6⋊D6φ: C22/C1C22 ⊆ Out C12⋊S3248+C12:S3.7C2^2288,578
C12⋊S3.8C22 = Dic6.20D6φ: C22/C1C22 ⊆ Out C12⋊S3488+C12:S3.8C2^2288,583
C12⋊S3.9C22 = D125D6φ: C22/C1C22 ⊆ Out C12⋊S3248+C12:S3.9C2^2288,585
C12⋊S3.10C22 = S3×Q82S3φ: C22/C1C22 ⊆ Out C12⋊S3488+C12:S3.10C2^2288,586
C12⋊S3.11C22 = D126D6φ: C22/C1C22 ⊆ Out C12⋊S3488+C12:S3.11C2^2288,587
C12⋊S3.12C22 = Dic6.10D6φ: C22/C1C22 ⊆ Out C12⋊S3488+C12:S3.12C2^2288,593
C12⋊S3.13C22 = Dic6.22D6φ: C22/C1C22 ⊆ Out C12⋊S3488+C12:S3.13C2^2288,596
C12⋊S3.14C22 = D12.13D6φ: C22/C1C22 ⊆ Out C12⋊S3488+C12:S3.14C2^2288,597
C12⋊S3.15C22 = D12.14D6φ: C22/C1C22 ⊆ Out C12⋊S3488+C12:S3.15C2^2288,598
C12⋊S3.16C22 = C248D6φ: C22/C1C22 ⊆ Out C12⋊S372C12:S3.16C2^2288,768
C12⋊S3.17C22 = SD16×C3⋊S3φ: C22/C1C22 ⊆ Out C12⋊S372C12:S3.17C2^2288,770
C12⋊S3.18C22 = C24.40D6φ: C22/C1C22 ⊆ Out C12⋊S3144C12:S3.18C2^2288,773
C12⋊S3.19C22 = C24.35D6φ: C22/C1C22 ⊆ Out C12⋊S3144C12:S3.19C2^2288,775
C12⋊S3.20C22 = C24.28D6φ: C22/C1C22 ⊆ Out C12⋊S3144C12:S3.20C2^2288,776
C12⋊S3.21C22 = Dic6.26D6φ: C22/C1C22 ⊆ Out C12⋊S3488+C12:S3.21C2^2288,964
C12⋊S3.22C22 = C2×C242S3φ: C22/C2C2 ⊆ Out C12⋊S3144C12:S3.22C2^2288,759
C12⋊S3.23C22 = C24.78D6φ: C22/C2C2 ⊆ Out C12⋊S3144C12:S3.23C2^2288,761
C12⋊S3.24C22 = C24.5D6φ: C22/C2C2 ⊆ Out C12⋊S3144C12:S3.24C2^2288,766
C12⋊S3.25C22 = D1218D6φ: C22/C2C2 ⊆ Out C12⋊S3244+C12:S3.25C2^2288,473
C12⋊S3.26C22 = D12.27D6φ: C22/C2C2 ⊆ Out C12⋊S3484C12:S3.26C2^2288,477
C12⋊S3.27C22 = C2×C325SD16φ: C22/C2C2 ⊆ Out C12⋊S348C12:S3.27C2^2288,480
C12⋊S3.28C22 = Dic6.29D6φ: C22/C2C2 ⊆ Out C12⋊S3484C12:S3.28C2^2288,481
C12⋊S3.29C22 = C2×C3211SD16φ: C22/C2C2 ⊆ Out C12⋊S3144C12:S3.29C2^2288,798
C12⋊S3.30C22 = C62.134D4φ: C22/C2C2 ⊆ Out C12⋊S3144C12:S3.30C2^2288,799
C12⋊S3.31C22 = C62.73D4φ: C22/C2C2 ⊆ Out C12⋊S372C12:S3.31C2^2288,806
C12⋊S3.32C22 = C62.74D4φ: C22/C2C2 ⊆ Out C12⋊S3144C12:S3.32C2^2288,807
C12⋊S3.33C22 = D12.33D6φ: C22/C2C2 ⊆ Out C12⋊S3484C12:S3.33C2^2288,945
C12⋊S3.34C22 = C3272- 1+4φ: C22/C2C2 ⊆ Out C12⋊S3144C12:S3.34C2^2288,1012
C12⋊S3.35C22 = C3292- 1+4φ: trivial image144C12:S3.35C2^2288,1015

׿
×
𝔽